On weighted Grüss type inequalities for double integrals
نویسندگان
چکیده
منابع مشابه
Grüss type inequalities for double integrals on time scales
We prove some weighted Grüss type inequalities for double integrals on time scales and unify the corresponding continuous and discrete versions, which are the generalizations of the results proved earlier in the literature
متن کاملGeneral Minkowski type and related inequalities for seminormed fuzzy integrals
Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.
متن کاملOn Weighted Inequalities for Parametric Marcinkiewicz Integrals
We establish a weighted Lp boundedness of a parametric Marcinkiewicz integral operator ρ Ω,h if Ω is allowed to be in the block space B (0,−1/2) q (Sn−1) for some q > 1 and h satisfies a mild integrability condition. We apply this conclusion to obtain the weighted Lp boundedness for a class of the parametric Marcinkiewicz integral operators ∗,ρ Ω,h,λ and ρ Ω,h,S related to the Littlewood-Paley ...
متن کاملgeneral minkowski type and related inequalities for seminormed fuzzy integrals
minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. also related inequalities to minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. several examples are given to illustrate the validity of theorems. some results on chebyshev and minkowski type inequalities are obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
سال: 2017
ISSN: 1303-5991
DOI: 10.1501/commua1_0000000800